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Abstract-This paper presents closed-form solutions for the pore pressures and stress fields for the
inclined borehole and the cylinder, induced by boundary stress perturbation in an anisotropic
poroelastic medium. The governing equations for the transversely isotropic poroelastic materials
under the cylindrical coordinate system are presented. The solution for the inclined borehole,
subjected to a three-dimensional far-field anisotropic stress field, is derived with the borehole
generator coinciding with the material axis of symmetry; while the solutions for the cylinder are
obtained under various loading conditions that are encountered in laboratory testing procedures.
The analysis shows, in addition to the effect of time on stress and pore pressure variations, that
poromechanical anisotropic material coefficients also play an important role in calculating the in­
plane stress fields, which is not the case using the classical anisotropic theory of elasticity. © 1998
Elsevier Science Ltd. All rights reserved.

l. INTRODUCTION

The theory of anisotropic poroelasticity was formulated by Biot (1955), in an attempt to
generalize consolidation theory. Later, Biot and Willis (1957) extended the theory to
describe various poromechanical properties of an anisotropic fluid saturated medium. In
their work, the outlined experimental procedures for the determination of the directional
poromechanical properties are extremely difficult to achieve, if not impossible. Following
the interpretation of Rice and Cleary (1976) of the poroelastic material constants, Thomp­
son and Willis (1991) reformatted the anisotropic poroelastic constitutive relations, in
which the parameters that appear are given explicitly in terms of drained (elastic) and
undrained compliances, and the generalized tensors ofSkempton's pore pressure coefficient,
Elj , and Biot's effective stress coefficient, !Xij' Recently, these parameters have been cast in a
practical model for laboratory measurement (Cui, 1995; Cheng, 1997).

With these latest developments in material characterizations, the application of the
anisotropic poroelastic theory to engineering problems becomes more amenable. Although
geomaterials exhibit many forms of anisotropy, closed-form solutions for anisotropic por­
oelasticity are almost non-existent in the literature. Recently, the transverse anisotropic
poroelastic solutions for the one-dimensional consolidation (Cui et at., 1996a) and the two­
dimensional Mandel's problem (Abousleiman et at., 1996a) were derived. These solutions
may not find a wide range of engineering applications, but they can serve as benchmarks
validating numerical algorithms such as the finite element method (Cui et at., 1996b).

In this work we extend the transverse isotropic poroelastic solutions to the cases of the
inclined borehole and cylinder geometries. Stability of wellbores in deep drilling remains
one of the major problems in the oil and gas industry. The cylinder is the geometry most
widely used in laboratory testing procedures for rocks and other geo-materials.
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2. GOVERNING EQUATIONS

For the borehole and cylinder problems it is natural to use the cylindrical coordinate
system to analyze the poromechanical behavior of such geometries exhibiting axial
symmetry. We limit the formulations and solutions to the transverse isotropic case, keeping
in mind that the extension to the orthotropic one (associated with the cylindrical coordinate
system) is natural, only its application is limited because it is necessary to determine the 13
poromechanical coefficients needed. In the case of transverse isotropy where only eight
poromechanical parameters are involved with the z-axis assigned as the axis of material
rotational symmetry, stress-strain relations are presented below:

(Jrr Mil M 12 M 13 0 0 0 Srr tl.

(Jeo M I2 MIl M 13 0 0 0 SOO IX

(Jzz M I3 M 13 M 33 0 0 0 Szz IX'

0 0 0 M 44 0 0 0
p. (1)

Tro Yre

Tez 0 0 0 0 M 55 0 YOz 0

Trz 0 0 0 0 0 M 55 Yn 0

In the above, Su and Yij and (Jii and Tij are strain components and total stress components in
the cylindrical coordinate system, respectively; p is the pore pressure, IX and IX' are Biot's
effective stress coefficients in the isotropic plane (r-e plane) and in the z-direction, respec­
tively; and Mij are components of the drained elastic modulus matrix given by:

E(E' -EV'2)
Mil = ----'------'----

(1 + v)(E' - E'v- 2Ev'2)

E(E'v+Ev'2)
M12 =-----'------'---

(1 +v)(E' -E'v-2Ev'2)

EE'v'
M13 =-----­

E' -E'v-2Ev/2

(2a)

(2b)

(2c)

(2d)

E

2(1 + v)
(2e)

M 55 = G' (2f)

in which E and v are drained Young's modulus and Poisson's ratio in the isotropic plane,
E' and v' are similar quantities related to the direction of the axis of symmetry, and G' is
the shear modulus related to the direction of the axis of symmetry.

The fluid volumetric variation relation for the transversely isotropic material may be
written as:

(3)

where ( is the variation of fluid content per unit reference volume, and Mis Biot's modulus.
It is noted that unlike elasticity, except for the permeability, eight material properties

are required to define a transversely isotropic poroelastic material, such as those mentioned
above: E, E' , v, v', G', IX, (X' and M. However, they need not necessarily be measured directly.
They can be determined from other parameters which are more convenient to measure in



Transversely isotropic media for wellbore and cylinder 4907

the laboratory. For example, the poroelastic properties under undrained conditions are
probably easier to be measured. A set of relations between the material properties adopted
previously and the material properties related to the undrained state is listed below (see
Cui, 1995; Cheng, 1997):

M 13 = M~3-lXa'M

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

where the superscript, u, indicates the undrained state; Mij are the elements of the undrained
elastic matrix and can be expressed in terms of the undrained Young's moduli and Poisson's
ratios by eqns (2); Band B' are, respectively, Skempton's coefficients in the isotropic plane
and in the direction of the axis of elastic symmetry. The relation between variations of
pore pressure and total stresses at the undrained state is defined through the Skempton's
coefficients:

(5)

It is assumed that the material is homogeneous, the boundary conditions do not vary
along the z-axis, and the depth of the domain in the z-direction is infinitely long or much
greater than the cross-sectional geometry; hence, the generalized plane strain (or complete
plane strain) condition manifests itself (Abousleiman et al., I 996b ; Cui et al., 1997b). The
generalized plane strain condition results in that all stress and strain components, and the
pore pressure are z-independent; therefore, leading to the following governing equations.

Equilibrium equations

Strain-<iisplacement relation

OU" 1 oror Urr-(JOO-+--+ =0
or r oe r

orrz 1 oroz rrz-+--+-=0.
or r 08 r

OUr
err = a;:

1 oUo Ure ---+-
00 - r 08 r

lour OUo Uo
}' =--+---rO r oe or r

(6a)

(6b)

(6c)

(7a)

(7b)

(7c)

(7d)
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(7e)

(7f)

where U j are the components of the vector of displacement in the cylindrical coordinate
system.

Continuity equation

o( 2
--KV p=oat (8)

where K = k/Jl is the permeability in the isotropic plane in which k is the intrinsic per­
meability in the isotropic plane and Jl is the viscosity of the pore fluid, and V2 is a differential
operator expressed by :

(9)

From eqns (8), (6), (3), and (1), we obtained the following fluid variation field equation:

where CT is a diffusion coefficient in the isotropic plane and may be expressed by:

KMMll
CT =

MIl +ct2M

Darcy's law

(10)

(11 )

(12a)

(12b)

(12c)

where qi are the components of the vector of the specific discharge of the pore fluid in the
cylindrical coordinate system.

3. SOLUTION FOR BOREHOLE PROBLEM

3.1. Problem description
It is assumed that an infinitely long borehole is drilled perpendicular to the isotropic

plane of a transversely isotropic poroelastic formation. The borehole axis is designated as
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(a)

Sy'..-

(b)
Fig. I. Inclined borehole in a transversely isotropic material.

the z-axis in Fig. I (a). The principal axes of the far-field stresses are shown as x' - yl - Zl

with three stress components denoted as Sx" Sy' and Sz·. The inclination of the borehole is
measured by the angles qJx and qJz as depicted in Fig. l(a). Figure I (b) shows the far-field
stress components from the vantage-point of the borehole coordinates x - y - z. It is noted
that there now exist normal and shear stress components denoted by Sij'

The boundary conditions of the problem can be imposed in the following: at the far­
field, i.e., r -+ 00,

(1xx = -Sx (13a)

(1yy = -Sy (13b)

(1zz = -Sz (13c)

't'xy = -Sxy (13d)

't'yz = -SyZ (13e)

'xz = -Sxz (l3f)

P =Po (13g)

where (1u and 'ij are stress components under the Cartesian coordinate system xyz, and Po

is the formation virgin pore pressure; and at the borehole wall, i.e., r = R

'yO = 'rz = 0

P = p;H(t)

(14a)

(l4b)

(14c)

in which Pw is the wellbore pressure, Pi is the pore pressure at the borehole wall, and H(t)
is the Heaviside step function. It is noted that Pi is not necessary the same as Pw due to the
existence of a filter cake that usually forms in drilling operations.

Because of the linearity of the problem, it can be decomposed into three sub-problems.

Problem I

At the far-field (r -+ 00),
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O"xx = -Sx

P = Po

'yz = 'xz = 0;

and, at the borehole wall (r = R),

Problem II

At the far-field (r -> 00),

and, at the borehole wall (r = R),

Problem III

At the far-field (r -> 00),

O"xx = O"yy = O"zz = 'xy = P = 0

'yz = -SyZ

and, at the borehole wall (r = R),

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

(16a)

(16b)

(16c)

(16d)

(17a)

(17b)

(18)

(19a)

(19b)

(19c)

(20)

3.2. Correspond elastic case
Before moving to the poroelastic solution, let us first examine the stresses around the

borehole for the corresponding elastic problem. This can be achieved by setting
P = Po = Pi = 0 in the poroelastic problem. When the symmetry axis of the transversely
isotropic material coincides with the borehole axis, it can be demonstrated, from the
anisotropic elasticity (Amadei, 1983), that the vertical stresses in Problem II and anti-plane
shear stresses in Problem III (which are the only non-zero stress components) do not
produce any in-plane stress. Therefore, they are totally uncoupled with Problem 1. More
importantly, Problem II does not disturb the initial stress field at all; and anti-shear stresses
in Problem III have no effect on the volumetric strain. This indicates that the original trivial
pore pressure fields in Problems II and III are never changed. Therefore, Problems II and
III are stand-alone elastic problems, and only Problem I is of a poroelastic nature. In
addition, according to the anisotropic elastic borehole solution (Amadei, 1983), the aniso­
tropic elastic solution for stresses of Problem III is exactly the same as the isotropic one.



Transversely isotropic media for wellbore and cylinder 4911

However, it should be noted that these conditions are no longer valid when the material
symmetry axis has an arbitrary inclination. Under this circumstance, the pore pressure may
be influenced by an anti-plane shear stress field.

3.3. Solution for Problem I
Problem I is a plane strain problem. In elasticity the plane strain solution for stresses

in transverse isotropic material is the same as that for the isotropic one, if the plane of
symmetry is orthogonal to the material rotational axis of symmetry. While the governing
equations of the poroelastic anisotropic case are similar to the isotropic ones, their solutions
for stresses are different (Abousleiman et al., 1995; Cui, 1995). The solution for Problem I
is then expressed by:

where

P _ Sx+Sy
0- 2

S = J(Sx-
Sy

)2 +S2o 2 xy

1 -1 2Sxy
er = 2tan

SX-Sy'

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

(22a)

(22b)

(22c)

Details of the derivations and expressions of a~~), a~;), a~;), aW, aW, aW , T~~), p(2), and p(3)

are presented in Appendix A.

3.4. Solution for Problem II
As mentioned before, Problem II is purely elastic for the case of material anisotropy

concerned within this paper. Its solution for stresses is the same as the one for the cor­
responding isotropic problem (Cui et aI., 1997a), hence,

(23a)

(23b)

In fact, this set of stresses and the pore pressure satisfies all the governing equations,
compatibility and boundary conditions; therefore, it forms an admissible poroelastic
solution.

Generally speaking, taking off the core material which occupied the borehole geometry
originally disturbs initial stress and pore pressure fields around the borehole and results in
the redistribution of stresses and pore pressures. Problem II presents the parts of stress and
pore pressure fields which are not disturbed through this process. Therefore, its solution
must be uniform as the same as its initial state.



4912 Y. Abousleiman and L. Cui

3.5. Solution for Problem III
This problem is an anti-shear problem. For this special case of transverse isotropy

investigated here, the shear deformation is uncoupled with the pore fluid flow. Since the
anisotropic elasticity shows that the excavation of the borehole only disturbs the anti-shear
stresses, hence the shear deformation, Problem III is also purely elastic. The solution is the
same as the elastic one. Under these circumstances, the anisotropy does not affect anti­
shear stress fields. (However, the displacements are affected.) Therefore, the solution can
be obtained as:

r;~II) = -(Sxz cos e+syZ sine) [l-H(t) ~22J

r~~II) = (Sxz sin e- Syz cos e) [1+H(t) ~22J

(24a)

(24b)

(24c)

3.6. Final solution
Finally, the solution for dynamic variables of an inclined borehole in a transversely

isotropic poroelastic medium is obtained by superposition; i.e.,

(J rr = (J;~) (25a)

(Jee = (J~J (25b)

(Jzz = (J~~ + (J~~I) (25c)

rre = r;V (25d)

rrz = r;~II) (25e)

rez = r~~I) (25f)

p =p(l) (25g)

in which components that are identically zero are omitted.

4. SOLUTION FOR CYLINDER PROBLEMS

4.1. Problem description
In this problem, the length of the cylinder is assumed to be much greater than its

radius; the isotropic plane of the material symmetry is also normal to the axis of the
cylinder (the z-axis in Fig. 2) ; and, the flow in the z-direction is not allowed. The boundary

z

x

Fig. 2. Schematic of the cylinder.



Transversely isotropic media for wellbore and cylinder 4913

conditions commonly encountered in the laboratory can be summarized at the cylinder's
outer boundary, r = R, as:

P = Po(t)

qr = Q(t)j2nR

(J" = - Po (t) - So cos BH(t)

're = So sin 2BH(t)

rrz = O.

(26a)

(26b)

(26c)

(26d)

(26e)

In addition, a uniform axial strain is imposed which is similar in laboratory tests jargon
called a "stroke control test" : i.e.,

(27)

In the above, Po is a time-dependent pore pressure applied on the cylindrical surface; Q(t)
is the total flow discharge across the cylindrical surface per unit length; Po is the normal
pressure applied on the surface and it may be a time-dependent loading; So is a constant
which represents the amplitude of sinusoidal distributions of normal pressure and shear
stress applied on the surface; and GO is the magnitude of the compressive axial strain and
may also be time-dependent.

In view of the linearity, the problem can be decomposed into the following modes for
which combinations (modes superposition) can simulate many laboratory test con­
figurations:

Mode I

At r = R,

p = poet)

(J" = 0

with the plane strain condition Gzz = O.

Mode 2

At r = R,

qr = Q(t)/2nR

with the plane strain condition Gzz = O.

Mode 3

At r = R,

with the plane strain condition Gzz = O.

(28a)

(28b)

(28c)

(29a)

(29b)

(29c)

(30a)

(30b)

(30c)
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Mode 4

At r = R,

Y. Abousleiman and L. Cui

qr = 0

(J'rr = -Po(t)

(31a)

(31 b)

(31c)

with the plane strain condition 8zz = O.

Mode 5

At r = R,

p=o

(J'rr = - So cos 28H(t)

ere = So sin 28H(t)

with the plane strain condition 8zz = O.

Mode 6

At r = R,

qr = 0

(J'rr = - So cos 28H(t)

ere = So sin 28H(t)

with the plane strain condition 8zz = O.

Mode 7

At r = R,

p=o

with a generalized plane strain condition 8zz = - 80'

Mode 8

At r = R,

(32a)

(32b)

(32c)

(33a)

(33b)

(33c)

(34a)

(34b)

(34c)

(34d)

(35a)

(35b)

(35c)

(35d)

with a generalized plane strain condition 8zz = -80,

Except for Modes 5 and 6, which are asymmetric, all other modes are axisymmetric.
Modes 5 and 6 are solved below first. Then, the general solution for the axisymmetric
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cylinder problem is derived. Hence, all axisymmetric modes are solved according to the
corresponding boundary conditions.

4.2. Solution for asymmetric problem
Modes 5 and 6 are asymmetric problems. Their corresponding elastic solution can be

obtained as:

(Jrr = - So cos 20H(t)

(Jeo = Socos20H(t)

erO = So sin 20H(t)

(36a)

(36b)

(36c)

(36d)

It is noted that according to the formula (5), the stress field expressed by (36) does not
result in any variation of the pore pressure at the undrained state, and the flow boundary
conditions for Modes 5 and 6 are trivial. Hence, the pore pressure distribution in the
cylinder for Modes 5 and 6 must also be trivial since there is no disturbance subjected to
the stress field (36). In other words, Modes 5 and 6 are purely elastic. Therefore, the solution
for Modes 5 and 6 are exactly the same as their elastic counterparts and expressed by:

(Jrr = - So cos 20H(t)

(Joe = So cos 20H(t)

erO = So sin 20H(t)

p=O.

(37a)

(37b)

(37c)

(37d)

(37e)

4.3. Solution for axisymmetric problem
For an axisymmetric cylinder problem, such as all other modes except for Modes 5

and 6, the axisymmetry leads to :

(38a)

(38b)

(38c)

Except that Uz is a function of r, z, and t, all other variables, such as am (Joo, (Jm p, qr and
Un are functions of the radial distance r and time t only. The general solution for an
axisymmetric cylinder problem can be derived analytically in the Laplace transform domain.
The solution in the time domain is obtained via the inverse of the Laplace transform
through a numerical technique (Stehfest, 1970).

Because ofaxisymmetry, the diffusion eqn (10) can be written as:

(39)

Applying the Laplace transform to eqn (39) yields:

(40)

where - denotes the Laplace transform and s is the Laplace transform variable. Setting
e= r~, it is obtained that:
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(41)

Applying the solution for the fluid content variation' and using constitutive relations (1)
and (3), the strain-displacement relation (7), and Darcy's law (12), the general solution for
the axisymmetric cylinder problem (associated with Modes 1-4, 7, or 8) is derived as:

(42a)

(42b)

(42c)

(42d)

(42e)

(42f)

In the above, A 1 and A2 are arbitrary functions of the Laplace transform variable s; and In
is the modified Bessel function of the first kind of order n. For individual problems, AI and
A2 can be determined from corresponding loading and boundary conditions. For Modes
1-4, 7, and 8, Al and A2 are obtained below:

Mode I

(43a)

(43b)

(43c)

where p= Rfii0., and C1 is expressed by:

(44)

Mode 2

(45a)

(45b)

(45c)
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Mode 3

Po (X2 M
A] = ------­

GC3 MIlIa({J)

Po
A 2 = - 2GC

3

where C3 is expressed by :

Mode 4

Al =0

PoA 2 = - ----'=----

M ll +M12 +2rx2 M

Mode 7

where C3 is given byeqn (47) and C7 is expressed by:

Mode 8

4917

(46a)

(46b)

(46c)

(47)

(48a)

(48b)

(48c)

(49a)

(49b)

(49c)

(50)

(5Ia)

(SIb)

(Sic)

It should be noted that AI in Modes 4 and 8 is zero; hence, no flow takes place in the
cylinder. In fact, for Modes 4 and 8 the pore pressure is identical everywhere, and the
boundary surface is impermeable Gacketed test). Therefore, the pore fluid is not allowed
to flow in the cylinder; and the modes represent the undrained state; i.e., solutions for
Modes 4 and 8 are what we call the "undrained solutions".
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5. NUMERICAL EXAMPLES

5.1. Material anisotropy
For transversely isotropic materials with micro-homogeneous and micro-isotropic

solid skeletons, the poroelastic constants (Biot's effective stress parameter) Ct and Ct' can be
expressed in terms of Mij and the bulk modulus of the solid grains, Ks (Cheng, 1997) :

Ct = 1- MIl +M12 +M I3

3Ks

, _ 1 2M l ) +M33
Ct - - 3K .

s

(52a)

(52b)

Therefore, Young's moduli and Poisson's ratios (which lead to all necessary M,), M, and
Ks are enough to define the transversely isotropic poroelastic constitutive relations. As an
example, it is assumed that E = 20.6 GPa, v = 0.189, M = 15.8 GPa, Ks = 48.2 GPa, and
K = K' = 8.64 X 10-6 m2/MPa day (Cui et al., 1996b). For given anisotropic ratios of
nE = E/E' and n, = v/v', E' and v' can be determined; hence, a transversely isotropic
material is defined. Different ratios of nE and n, define different degrees of anisotropy, and
for nE = nv = 1 the material is isotropic. In the following examples, various ratios of E/E'
and v/v' were chosen to demonstrate the effect of anisotropy.

5.2. Inclined borehole
The far-field in situ stress and formation pore pressure gradients adopted for the

analysis are the following (Woodland, 1990) : Sx' = 29 MPa/km, Sy' = 20 MPa/km, Sz· = 25
MPa/km, and Po = 9.8 MPa/km. The radius of the borehole was assumed to be R = 0.1 m.
The deviation of the borehole was defined by qJx = 30° and qJz = 60° ; and the depth of the
formation was assumed to be 1000 m. For the sake of convenience, only the case of an
excavation was analyzed; i.e., the well pressure was assumed to be zero.

Numerical results are presented in Figs 3-7. In all the figures, the effective stress
indicates Terzaghi's effective stress (aij+ PC>ij); and the negative values of stresses are pre­
sented so that the results imply the rock mechanics sign convention for stresses (i.e., positive
for compression). All calculated pore pressures and stresses are presented as varying with
r/R along e= 90°.

Figure 3 presents the pore pressure profiles with nv = 0.5, 1, 2 for fixed nE = 1 at
different times. It is observed that the material anisotropy influences the pore pressure only
at small times (t = 0.001 day). For a long time duration (t = 1 day), all pore pressure
distributions for different nv are identical; indicating that Poisson's ratios anisotropy does
not affect pore pressure at large times.

In Fig. 4 the effective radial stress distribution shows similar results of the anisotropy
effect as for the pore pressure. The stress for nv = 0.5 is influenced much more by the
anisotropy than for nv = 2. However, unlike the case for the pressure, the anisotropy effect
on the stress still exists at large times. It seems that the anisotropy effect on the effective
radial stress becomes more significant at places far away from the borehole wall as time
progresses.

Figures 5 and 6 describe, respectively, the effective tangential and axial stresses around
the borehole. It can be seen from these figures that at small time (t = 0.001 day) for different
ratios of nv magnitudes of stresses around the borehole are quite different, but they are
close at the places away from the borehole. When time duration becomes longer (t = 1day),
the anisotropy effect on stresses is transmitted to the places away from the borehole. It
should also be noted that the material anisotropy effect is significant on effective tangential
and axial stresses compared to the pore pressure and the radial stress; thus affecting
wellbore stability analyses.

For the cases of varied nE with fixed nv = 1, analyses showed that material anisotropy
effects on the pore pressure and all effective stresses are qualitatively similar to the previous



Transversely isotropic media for wellbore and cylinder

Inclined borehole: E/E' = 1, 8= 90°.
12 ..-------------------~__,
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10

8

6

4

2

o

t = 0.001 day
- - - - t= 1 day

o Fly= 1
A Ilv= 0.5
<> fly= 2

• __ a···-·
.a--a--.. --a·.._-e----

1.0 1.1 1.2
rlR

1.3 1.4 1.5

Fig. 3. For E/E' = I and along the direction of e= 90°, pore pressure (p) near the borehole varying
with r/R.

Inclined Borehole: E/E' = 1, 8= 90°.
12 -,------------------------,

10

8

6

4

2

o

-2

o
I:>.

<>

t=0.001 day
t = 1 day
Fly= 1
fly= 0.5
fly=2

1.0 1.1 1.2 1.3 1.4 1.5
rlR

Fig. 4. For E/E' = I and along the direction of e= 90°, effective radial stress (-0';,) near the
borehole varyuing with r/R.
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Inclined borehole: E/E' = 1, 6= 90°.

t = 0.001 day
t = 1 day
f\,= 1
Ily= 0.5
nv=2

o
t:.

<>

"""" ~"" "" ,, ,
1>., ~

" "'" "~" l!."
"" "'(I" "6-

"" "":f::l. ....
v;;::, ~"

....~, .....6. ....
......~~ 6 ....

.......... 1!.
'~ ......~ ~.. ..

........ Q ........­--=:,
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52

48

1
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40

(ij
'+:Jc
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36c
~
~
.~ 32

lD
28

1.0 1.1 1.2 1.3 1.4 1.5
rlR

Fig. 5. For £1£' = I and along the direction of () = 90°, effective tangential stress (-aim) near the
borehole varying with riR.

Inclined borehole: E/E' = 1, 6= 90°.

1.51.41.31.21.1

t= 0.001 day
- - - - t= 1 day

o f\,= 1
t:. f\,= 0.5
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24-8!.
6 22

I
0> 20

(ij

~ 18

~
.~ 16

IIi
14

12

10

1.0
rlR

Fig. 6. For £1£' = I and along the direction of () = 90°, effective axial stress (-a;,) near the
borehole varying with rlR.
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Inclined borehole: vlv' = 1, 8= 90°.
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Fig. 7. For vlv' = I and along the direction of f) = 90°, effective axial stress (-0";,) near the borehole
varying with rlR.

cases of varied nv• However, considerable effects of anisotropy are exhibited in the calcu­
lation of the effective axial stresses as shown in Fig. 7. Similar to the cases of varied n., the
material anisotropy related to the difference between E and E' influences the effective axial
stress considerably. Notice that material anisotropy would have a combination of these
two ratios, and the corresponding analysis should be conducted.

5.3. Cylinder
The radius of the cylinder was set to 0.1 m. It was assumed that a linearly time­

dependent compressive axial strain rate ("stroke rate") of 10-8 lis had been applied; i.e.,
ezz = _10- 8 t with a free stress at the cylindrical boundary, (Jrr = rrO = rrz = p = O. These
conditions results in a uniaxial problem for an elastic medium; however, a poroelastic
cylinder behave pseudo-three-dimensional.

Figure 8 presents the pore pressure at the center of the cylinder as a function of time
for the cases of nv = 0.5, 1, 2 with nE = 1. It is observed that the pore pressure increases
from the initial (trivial) level once the axial strain is applied. After a certain time duration,
it keeps a constant level as time increases, since the pore pressure field in the cylinder
becomes steady. The magnitude of the pore pressure changes significantly with varied ratio
of nv• The greater the nv, the higher the pore pressure. In Fig. 9 the pore pressure at the
center of the cylinder is plotted for the cases ofnE = 0.5, 1, 2 with n v = 1. Similar phenomena
to the previous ones are observed.

Figures 10 and 11 show the tangential stresses at the boundary surface (r = R) for the
cases of fixed nE and nv , respectively. The material anisotropy and time effects on the
tangential stress are qualitatively similar to those on the pore pressure at the center. It is
known that for a non-porous elastic cylinder under the same boundary conditions the
problem is uniaxial and the tangential stress is trivial. However, for the poroelastic problem
a tensile tangential stress is developed as time increases. This suggests that the saturated
cylinder may be fracturing due to a compressive axial strain.

The total axial stress at the center varying with time for the cases of nE = 0.5, 1,2 with
nv = 1 is displayed in Fig. 12. In the figure, the negative values of the stress (i.e., positive
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Fig. 8. For E/E' = I, pore presdsure (p) at r = 0 in the cylinder varyuing with time.
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Fig. 9. For v/v' = I, pre pressure (p) at r = 0 in the cylinder varying with time.

indicates a compressive stress) varying with time are plotted. The axial stress is almost
linearly dependent of time. Material anisotropy effect on the stress is considerable; the
magnitude of the stress increases as the ratio nE decreases. It is noted that the magnitude
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Fig. 10. For £1£' = I, tangential stress (ueo) at r = R in the cylinder varyuing with time.
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Fig. II. For vlv' = I, tangential stress (uoo) at r = R in the cylinder varying with time.

of the axial stress is much greater than the ones of all other dynamic variables. Considering
that the slow axial strain rate and the free stress boundary conditions were applied, these
results are expected. Although the results are not presented, it is of interest to point out
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Fig. 12. For v/v' = I, axial stress (- 0",,) at r = 0 in the cylinder varying with time.
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that the effect of variation of nv on the axial stress, on the other hand, is negligible for
nE = 1. This indicates that the difference between two Poisson's ratios may not be a major
factor as material anisotropy to influence the axial stress.

In contrast with the axial stress, the radial displacement at the boundary surface is
sensitive to the variation of n" but insignificantly influenced by the change of nE' The
displacement varying with time for cases of nv = 0.5, 1,2 with nE = I is presented in Fig.
13. It is observed that the displacement is also almost linearly dependent of time and a
greater ratio nv leads to a larger displacement.

Finally, unlike the elastic problem, with coupled pore fluid effect the cylinder problem
under Mode 7 is not uniform any more. A non-trivial pore pressure field results from the
compaction of the cylinder; and this field is not uniform because of the zero pore pressure
condition enforced at the boundary. Hence, the deformation in the axial direction is resisted
by the pore fluid and the resistance is also spatially-dependent. This is basically why the
poroelastic problem is pseudo-three-dimensional. The radial and tangential stresses are
thus generated in the poroelastic problem. Figures 14 and 15 present the variations of the
axial stress and pore pressure along the radial direction at t = 3 min and t = 30 min. Non­
uniform stress and pore pressure fields are observed in the figures. Inhomogeneity of stress
and pore pressure fields is affected by the anisotropy of Poisson's ratios. If the strain rate
is very small and the sample permeability is large, the poroelastic effect may not be
significant; hence, the anisotropy effect on the axial stress may not be very pronounced,
and could be equivalent to the corresponding elastic cases. However, if the loading rate is
considerable and the permeability is small enough (Abousleiman et al., 1996b), the pore
pressure generated will be significant and may be comparable to the axial stress.

6. CONCLUSIONS AND DISCUSSIONS

For this special form of anisotropy in which the isotropic plane of the transversely
isotropic material is perpendicular to the borehole axis and cylinder axis, the poroelastic
solutions for inclined boreholes and cylinders have been derived. The borehole solution
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Fig. 13. For EIE' = I, radial displacement (u,) at r = R in the cylinder varyuing with time.
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may be applied to limited cases in practice. However, the cylinder solution can be applied
to measurements of poroelastic properties of transversely isotropic materials, as well as the
strain recovery method for in situ stress determinations in transversely isotropic formations.

The analyses of an inclined borehole show that effective stresses and pore pressure
around the borehole are influenced considerably by the material anisotropy, especially
when the Poisson's ratio in the isotropic plane is smaller than the Poisson's ratio related to
the z-direction. Particularly, the material anisotropy effect on the effective tangential and
axial stresses is significant. Therefore, it is expected that the material anisotropy influences
the borehole stability significantly, while the corresponding elastic solution predicts no
anisotropy effect on the fracturing at all.

A cylinder subjected to an axial strain was also analyzed. The results indicate that,
unlike the elastic cases, the poroelastic cylinder is a pseudo-three-dimensional problem. A
pore pressure field, as well as tangential and radial stress fields, are generated due to the
compaction of the cylinder. The material anisotropy effect on these fields is significant. The
analyses also show that if the axial strain rate is very small, the magnitudes of generated
pore pressure and in-plane stresses may not be significant compared to the. axial stress.
However, for the materials with lower tensile strength, such as soils and rocks, the induced
tensile stress may be high enough to fracture the specimen.
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APPENDIX

In the solution for Problem I expressed by eqn (21), superscript "i" on the right-hand side indicates the
corresponding solution for the ith mode which was described in Detournay and Cheng (1988). Actually, Modes
1,2, and 3 are three different special plane strain borehole problems. In all three modes, the boundary conditions
at infinity (I' -+ CIJ) are set as:

(53)

However, each mode has different boundary conditions at the borehole wall. More specifically:

Mode I

At I' = R,

(54)

Mode 2

At r = R,

Mode 3

At I' = R,

O'~;) = - So cos 2(IJ - O,)H(t) ; r~&) = So sin 2(0- IJ,)H(t); pO) = O.

(55)

(56)

Similar to the isotropic problem, the first two modes are axisymmetric problems. The diffusion of pore
pressure can thus be uncoupled from the solid deformation; and is governed by:

It can be derived that the axisymmetry also leads to :

A IX 1f'u, = - + --- rpdr
r Mil I' a

(57)

(58)

where A is an integration constant. In the above, all variables are finite and e = 0 at infinity is implied. Therefore,
the stresses can be expressed by :
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A ( M
12

) Ii'u, = -2G- -a 1- -- - rpdr
r 2 Mil r2 a

A ( M12
) I i' (M I2

)u,,=2G-+a 1--- - rpdr-a 1--- p.
r2 Mil r2 a Mil

(59a)

(59b)

Similar to the case of Problem III of the cylinder, Mode I can be proven to be purely elastic since the variation
of stresses around the borehole does not disturb the pore pressure field. Hence, the solution is obtained as :

p(l) =0.

(60a)

(60b)

(60c)

For Mode 2, p(2) can be obtained from the diffusion eqn (57); however, it can be solved analytically only in
the Laplace transform domain. p(2), u~;), and uW are given below as their Laplace transforms:

-(2) __ Po -Pi Ko(~)
p - s Ko(fJ) (6Ia)

(6Ib)

(6Ic)

where K n denotes the modified Bessel function of the second kind of order n.
Again, Mode 3 can only be solved analytically in the Laplace transform domain. From the equilibrium eqns

(6), the constitutive eqns (I) and (3), as well as the strain-displacement relationship (7), the Navier's equation in
cylindrical coordinate system can be obtained as:

aB law ap
Mil 8r -2G-; ao -a ar = 0

where

Applying the Laplace transform to Navier's eqns (62a), and the diffusion eqn (10) yields:

Mil +a'M I ag am aM I ae
-+-----=0

2G r ao ar 2G r ao

In view of the asymmetry of Mode 3, it can be assumed that:

(e(J), til), a;3), 6'~3), 6'~3) ,jiO)) = (2, E, 0" S" So, fi) cos 2(0- 0,)

Substituting relations (65) into eqns (64), a set of ordinary differential equations is produced. They are:

(62a)

(62b)

(63)

(64a)

(64b)

(64c)

(65a)

(65b)
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MIl +a'MdE W aMdZ
----'-'--2-G~- dr - 2 -;:- - -2G-~ = 0

M" +a'MEl d W rJ.M Z
----'-'--2-G~- --; - 2-d-r - -2G- --; = 0

d'Z I dZ (s, )_
-+-~- -r +4 2=0,
dr' r dr CT
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(66a)

(66b)

(66c)

Solving the above set of ordinary differential eqns (66) with associated boundary conditions, the following
expressions are obtained:

where

In the above.

3 ) A R' R
4J+-K,(O --2'C,~-3C3~

(' r' r4

4C
l

= ~~~~~~~,.--
2A,(M]-M,)-A,M,

4M,
C, = - ~~~~--'-~---,---

2A,(M3 -M,)-A,M,

2A, (M, +M 3 ) + 3A,M,C
J

= -,-,.-----'...C---=~--=-'_____~=--:-'-c

3[2A I (M] - M,) - A,Mtl'

aM
Al =~~~-

M,,+rJ.'M

M,,+M12 +2a'M
A, = ----'-'---~~~-

M l1 +a'M

M"
M I = 2Ga K,(f3)

I 6
M, = -f3 K , (f3) + - K,(f3)

13'

M J = 2 (~K,(f3)+ ;, K,(f3)}

(67a)

(67b)

(67c)

(67d)

(67e)

(68a)

(68b)

(68c)

(69a)

(69b)

(69c)

(69d)

(6ge)

To evaluate u~;) , u~:), uW, u~~), r;~), P<'), and pi]) in the time domain, a numerical technique for the inverse of the
Laplace transform should be applied,


